APR
APR Intercooler for Audi B9/B9.5 SQ5
APR Intercooler for Audi B9/B9.5 SQ5
In stock
SKU:IC100026
Couldn't load pickup availability
Features:
- Dramatically lowers intake air temp (IAT)
- The factory intercooler reaches dangerously high IAT levels, even on the stock ECU!
- Massive frontal surface area and core volume
- 3.125" x 5.75" x 28.25" - 162.4 in² front. & 507.62 in³ volume - OEM
- 2.250" x 16.2" x 22.00" - 356.4 in² front. & 801.90 in³ volume - APR
- Highly effective core design
- Bar-and-plate core with staggered and louvered fins.
- Rigorous testing determined core style, fin density, and size.
- Low pressure drop + highly effective cooling = high performance!
- Smooth cast end tanks Engineered for low turbulence/restriction and maximum flow.
- Organically shaped to promote airflow across entire core.
- Pressure tested to prevent power robbing boost leaks.
- Easy to install
- Simple plug-and-play design with no trimming or drilling necessary!
- Designed by engineers with lasers
- With the best equipment and smartest engineers, it just works!
Dyno Testing
Design
Unfortunately, to the untrained eye, many intercooler designs appear the same. However, effectiveness of the system and overall performance are greatly determined by several key metrics. Alloy selection, end tank design, construction type, fin style, fin density and overall core dimensions must be analyzed and balanced accordingly to deliver class-leading performance. While the OEM’s goal is to create a lightweight, easy to manufacture and inexpensive to produce, cross-platform design capable of supporting factory power levels, APR’s intercooler must be capable of supporting more than factory output. Achieving this goal took a multi-step approach focused around intercooler core selection, end tank design and install location.
Intercooler Core Design
The APR Intercooler core is a large bar-and-plate design featuring densely packed staggered and louvered fins. This design offers exceptional cooling while balancing pressure loss across the core, and maintaining critical airflow to the components behind the intercooler system. The core size was appropriately matched to the platform, minimizing pressure drop while leaving adequate space for appropriately designed end tanks. To APR’s mechanical engineering experts, the design represented the ultimate in performance, far exceeding the capabilities of the factory intercooler. To the driver, the result is simple: Repeatable performance, even in the most demanding of situations!
Core Style / Internal Fin Structure:
APR’s Engineers paid close attention to the balance between core effectiveness and pressure drop through the core, core style and fin density. With fin density too low, pressure drop decreases dramatically, but typically results in a core incapable of effectively cooling. Likewise, with fin density too great, pressure drop increases dramatically, resulting in the turbocharger working harder, and hotter, to produce the same level of airflow. By fine tuning this often unseen balancing act, as illustrated below, APR’s Engineers were able to maximize performance.
Share





